Esta técnica ofrece una precisión del 75% en la selección de embriones cromosónicamente normales.
NOTICIAS RELACIONADAS
Siemens Healthineers desarrolla software de radiología y terapias avanzadas en Getafe
En los últimos años, el desarrollo e implementación de la tecnología de Inteligencia Artificial (IA) ha demostrado el potencial para abordar las ineficiencias en varios pasos de la reproducción asistida, que incluyen la mejora en algunos procesos del laboratorio de Fecundación in vitro (FIV) y, más concretamente, en la selección de embriones.
En este sentido, IVI ha llevado a cabo los estudios más amplios acerca de la aplicación de la IA a la selección embrionaria, con la mayor casuística combinada de la historia científica hasta el momento, mediante el análisis de 25.000 embriones y 4.000 pacientes. Gracias a este estudio, IVI ha revolucionado el sector de la embriología, disponiendo en sus clínicas de una diversidad de técnicas que permiten ofrecer una selección embrionaria universal, estandarizada y automática.
Los últimos hallazgos han sido publicados en la revista norteamericana Fertility and Sterility y en la European Reproductive Biology OL.
“En los laboratorios de embriología hemos aplicado soluciones basadas en datos para evaluar el potencial de implantación embrionaria, lo que nos permite mejorar la eficiencia de uno de los procesos más importantes en reproducción asistida: el cultivo y la selección embrionaria, con una precisión del 75% en la selección de embriones cromosómicamente normales, siendo que en el proceso previo mediante evaluación manual no es posible identificar estos embriones, independientemente de la experiencia del embriólogo”, comenta el doctor Marcos Meseguer, embriólogo y supervisor científico de la Unidad de Embriología de IVI Valencia.
Además, el doctor Meseguer ha sido considerado recientemente por la Universidad de Stanford como uno de los mejores investigadores del mundo, junto a los profesores José Remohí, Antonio Pellicer y el doctor Juan Antonio García Velasco, todos ellos profesionales de IVI.
Recientemente se ha presentado el trabajo “Computer vision can distinguish between euploid and aneuploid embryos. A novel artificial intelligence (AI) approach to measure cell division activity associated with chromosomal status”, que tiene el objetivo de analizar un embrión cromosómicamente euploide sin necesidad de aplicar técnicas invasivas, es decir, extraer del blastocisto un número de células (entre 5 y 10), necesarias para poder analizarlas cromosómicamente y conocer el contenido del blastocisto.
Por primera vez, un sistema basado en la IA puede analizar con precisión los primeros estadios de desarrollo embrionario y cuantificar la duración de los ciclos celulares, además de conocer el diámetro de las células que forman el blastocisto, generando así un algoritmo capaz de distinguir entre un embrión cromosómicamente normal o anormal con un 75% de fiabilidad. La posibilidad de seleccionar y categorizar cromosómicamente los mejores embriones supone un aumento en las tasas de gestación y embarazo, y reduce las probabilidades de anomalías cromosómicas, proporcionando una predicción objetiva y fiable, mediante una técnica rápida y económica.
Esto supone, a juicio de los expertos, una revolución en reproducción asistida porque permitiría evitar las técnicas invasivas que, en cierta manera, pueden afectar a la viabilidad del embrión, igualando con el PGT-a no invasivo los resultados actuales sin el coste y el daño al embrión que estos conllevan. Además, supondría la automatización de un proceso que actualmente se realiza manualmente y de manera artesanal.
La IA es un término amplio que incluye aprendizaje automático y aprendizaje profundo; se refiere a cualquier programa con la capacidad de resolver problemas, aprender de las experiencias y realizar tareas como lo hacen normalmente los seres humanos.
“Este sistema clasifica embriones automáticamente empleando métodos de aprendizaje dirigido basados en la experiencia de embriólogos expertos, detecta y evalúa todos los pasos del desarrollo del embrión y además clasifica su morfología. La selección embrionaria automatizada, en comparación con la manual, es más precisa, por lo que la probabilidad de embarazo evolutivo está relacionada directamente con el porcentaje de puntuación y, por tanto, la paciente tiene mayores probabilidades de éxito”, explica el doctor Meseguer.